阅读背景:

PCL-基本结构PointCloud

来源:互联网 

  PCL中的基本数据结构是PointCloud,PointCloud是一个C++类,包含了如下数据域:

  • width (int)
    用点云数据集中的点数初始化width,width其实有两个含义:
    (1)对于无组织或者说无结构的点云来说,width就是指点云中点的个数。
    (2) 对于有结构的点云来说,width是指点云数据集一行上点的个数。有结构的点云可以理解成这个点云像image(或者说是一个矩阵)一样进行组织,数据被分为行和列,如立体相机或者TOF相机获得的点云数据就属于这一类。对于有结构点云的一大好处就是能知道点云中点的相邻关系,最近邻操作效率就非常高,可以大大提高PCL中相应算法的效率。
    例:cloud.width = 640; // there are 640 points per line
  • height (int)
    用点云数据集中点的高度(就是行数)初始化height,height同样有两个函数:
    (1)对于有结构点云来说,height代表点云的总行数
    (2)对于无结构的点云来说,height值为1,因此这也经常用来判断点云是或者不是一个有结构的点云。
    如:
cloud.width = 640; // Image-like organized structure, with 640 rows and 480 columns,
cloud.height = 480; // thus 640*480=307200 points total in the dataset
cloud.width = 307200;
cloud.height = 1; // unorganized point cloud dataset with 307200 points
  • points (std::vector)
    存储了数据类型为PointT的一个动态数组,例如,对于一个包含了XYZ数据的点云,points是包含了元素为pcl::PointXYZ一个vector。
    如:
pcl::PointCloud<pcl::PointXYZ> cloud;
std::vector<pcl::PointXYZ> data = cloud.points;
  • is_dense (bool)
    判断points中的数据是否是有限的(有限为true)或者说是判断点云中的点是否包含 Inf/NaN这种值(包含为false)。
  • sensor_origin_ (Eigen::Vector4f)
    代表了相应传感器的位置坐标(可能是进过平移的),这个数据成员是可选,在大多数的PCL算法中不会使用。
  • sensor_orientation_ (Eigen::Quaternionf)
    代表了相应传感器的朝向,这个数据成员是可选,在大多数的PCL算法中不会使用。

      为了简化开发,PointCloud中还包含了大量有用的函数,例如,用户不用根据height是否等于1来判断点云是否是有结构的,而是可以使用如下函数代替:

if (!cloud.isOrganized ())
...

  PointT类型只是点云中基础的点的数据,描述的是每一个独立的点。PCL中还含有大量其他类型的点,更多的信息可以参考https://pointclouds.org/documentation/tutorials/adding_custom_ptype.php#adding-custom-ptype


分享到: