阅读背景:

中部地区的Google Cloud Dataflow 575限制

来源:互联网 
Autoscaling: Unable to reach resize target in zone us-central1-b. QUOTA_EXCEEDED: Quota 'IN_USE_ADDRESSES' exceeded.  Limit: 575.0 in region us-central1. 

From https://cloud.google.com/dataflow/service/dataflow-service-desc my limit should be 1,000, but when running my dataflow job I get the warning above about a limit of only 575. Should I explicitly set a different region as specified in https://cloud.google.com/dataflow/docs/concepts/regional-endpoints or can I increase the limit to 1,000 in the central region?

从https://cloud.google.com/dataflow/service/dataflow-service-desc我的限制应为1,000,但在运行我的数据流作业时,我会收到上面的警告,大约只有575的限制。我应该明确设置不同的https://cloud.google.com/dataflow/docs/concepts/regional-endpoints中指定的区域,还是可以将中心区域的限制增加到1,000?

1 个解决方案

#1


2  

I guess you are using the default machine type, so each machine has one cpu but each of them has a standalone IP_ADDRESS. Even you can use up to 1000 instances, it seems your "IN_USE_ADDRESSES" quota in the region is set to 575 thus the error.

我猜您使用的是默认机器类型,因此每台机器都有一个cpu,但每个机器都有一个独立的IP_ADDRESS。即使您最多可以使用1000个实例,看起来该区域中的“IN_USE_ADDRESSES”配额也会设置为575,从而导致错误。

If you don't want to increase the number of "In Use Addresses", you can find other machine types to use more CPUs per instance, for example n1-standard-4. Otherwise, you can ask for more quota in "In Use Addresses".

如果您不想增加“使用中的地址”的数量,您可以找到其他机器类型,以便为每个实例使用更多的CPU,例如n1-standard-4。否则,您可以在“使用中的地址”中要求更多配额。


分享到: